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2 Detecting
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TABLE I
DESCRIPTIONS OF SOME ANOMALY-INDICATING CANDIDATE FEATURES FOR GENERAL CLOUD SERVICES.

Category Feature Description Manifestation

Point

(abs-)Min/Max (absolute) extremums of computing resources (e.g., CPU, memory) alarming peaks
ZeroCount the number of points with values being zero dead process

SpeDayCount the number of holidays or festivals inside an observed window expected peaks
OverZCount the number of points with the modified Z-score [40] larger than 3.5 short-lived spikes

Frequency
domain

FC Fourier coefficients of performance metrics voilent fluctuations;
jittersFTP-param parameters (centroid, variance, etc.) of absolute Fourier transform spectrum

CPSD cross power spectral density between metrics of the same aspect†
SK time-varying spectral kurtosis [41] of IO Bytes nonstationary regime

Trend

LLS-param calculate the linear least-squares regression over the observed window
and obtain the slope, intercept, standard error, etc. horizontal/up-/down-

trend; linearity;LLS-agg-param calculate the linear least-squares regression over rolling sub-sequences in an
observed window and obtain the mean of slopes, intercepts, standard errors, etc.

c3 c3 statistics [42] of computing resources measuring the non-linearity

Temporal
dependencies

ACF-µ/-� the mean and the variance over the autocorrelation for different lags unpredictable volatilityPACF-µ/-� the mean and the variance over the partial autocorrelation for different lags
margin-⌃ the sum of changes between every two neighboring points of metrics sudden rise

and fall(abs)-mar-Min/Max (absolute) extremums of marginal change of computing resources

Distribution
std standard deviation concept shift,

staircasesskew, kurt skewness and kurtosis of both single-series metrics and joint multi-variate metrics
q-quantiles the quantile of 10%, 50%, 90%, and the anomaly ratio (if known)

Cross-series

CID the complexity-invariant distance [43] between metrics of the same aspect complexity
corr Pearson correlations of metrics between the same and different aspects cross-metric and

cross-aspect relationsTLCC time lag cross-correlations of metrics between the same and different aspects
MI pointwise mutual information [44] of metrics between the same and different aspects

† Metrics reflecting diverse aspects may tend to behave differently, e.g., the disk usage is steady, while the CPU usage can fluctuate dramatically without
anomalies [11].

Algorithm 1: Incrementally training isolation forest.
Input: Xcat

[1:N ], �,  , Fpre - previously trained forest
Output: A new forest F consisting of � trees and Fpre

1 Initialize F
2 i 1 while i  � do
3 X 0  sample(Xcat

[1:N ], )
4 X 0

iso  Fpre(X
0) // Keep the samples “isolated” by

Fpre

5 F  F [ iT ree(Xiso)
6 end
7 return F

we apply incremental learning to further train the model
with forecasts, whose process is described in algorithm 1.
The forecasted results X̂[1 : N ] = x̂[l + 1 : l + s]n = 1N are
concatenated with the observed data, denoted by Xcat[1 : N ] =
[x[s:l]; x̂[l + 1 : l + s]n = 1N . The concatenated data are then
fed into the established forest. If a concatenation is isolated,
we then remove it from the existing forest and build up a new
isolation tree until the number of trees reaches the pre-defined
threshold �. Finally, 2� trees are created in the isolation forest.
In this way, only the extremely abnormal concatenated samples
are isolated. The idea is based on the fact that anomalies are
rare and most of the concatenated samples should be normal,
even though there are slight differences between concatenated
ones and the original observations X[1:N ].

V. EVALUATION

We evaluate Maat by answering three research questions:
• RQ1: How effective is Maat in anomaly anticipation?
• RQ2: How effective is the forcaster of Maat?

• RQ3: How much time can Maat advance anomaly alarm?

A. Experiment Settings

1) Comparative Approaches: As Maat is the first work
to address anomaly anticipation, we have to compare it
with real-time anomaly detectors. Following the most re-
cent anomaly detection papers [11], [10], we choose eight
state-of-the-art baselines: Dount [24], SR-CNN [45], Ads-
ketch [10], Telemanom [46], LSTM-VAE [47], MTAD-
GAT [23], DAGMM [48], and OmniAnomaly [9]. Note that
Maat anticipates anomalies in advance, whereas the com-
petitors issue alerts after their occurrences. We also evaluate
Maat’s detector individually by removing the forecaster and
only retaining the detector before incremental training to
derive its real-time version, Maat-rt, trained and tested on
observations as baselines do.

As far as we know, no existing studies directly target per-
formance metric forecasting. Thus, we compare Maat’s fore-
caster with general-purpose deterministic baselines (GRU [13],
TCN [12], and Transformer [15]) and advanced probabilistic
generation-based methods for multivariate time series (Deep-
VAR [14], GRU-MAF, and Transformer-MAF [49]). The latter
category regards the mean of output as the final forecast.

2) Datasets: We use three wildly used datasets containing
complex anomaly patterns. Table II summarizes the statistics
of these datasets, where #MetricNum denotes the number
of metrics in the dataset, and #MetricLen Avg. denotes the
average number of sampled points of each metric. All of them
are publicly available with brief introductions as follows.

Isolation trees on 
observations

Incrementally 
learning
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TABLE I
DESCRIPTIONS OF SOME ANOMALY-INDICATING CANDIDATE FEATURES FOR GENERAL CLOUD SERVICES.

Category Feature Description Manifestation

Point

(abs-)Min/Max (absolute) extremums of computing resources (e.g., CPU, memory) alarming peaks
ZeroCount the number of points with values being zero dead process

SpeDayCount the number of holidays or festivals inside an observed window expected peaks
OverZCount the number of points with the modified Z-score [40] larger than 3.5 short-lived spikes

Frequency
domain

FC Fourier coefficients of performance metrics voilent fluctuations;
jittersFTP-param parameters (centroid, variance, etc.) of absolute Fourier transform spectrum

CPSD cross power spectral density between metrics of the same aspect†
SK time-varying spectral kurtosis [41] of IO Bytes nonstationary regime

Trend

LLS-param calculate the linear least-squares regression over the observed window
and obtain the slope, intercept, standard error, etc. horizontal/up-/down-

trend; linearity;LLS-agg-param calculate the linear least-squares regression over rolling sub-sequences in an
observed window and obtain the mean of slopes, intercepts, standard errors, etc.

c3 c3 statistics [42] of computing resources measuring the non-linearity

Temporal
dependencies

ACF-µ/-� the mean and the variance over the autocorrelation for different lags unpredictable volatilityPACF-µ/-� the mean and the variance over the partial autocorrelation for different lags
margin-⌃ the sum of changes between every two neighboring points of metrics sudden rise

and fall(abs)-mar-Min/Max (absolute) extremums of marginal change of computing resources

Distribution
std standard deviation concept shift,

staircasesskew, kurt skewness and kurtosis of both single-series metrics and joint multi-variate metrics
q-quantiles the quantile of 10%, 50%, 90%, and the anomaly ratio (if known)

Cross-series

CID the complexity-invariant distance [43] between metrics of the same aspect complexity
corr Pearson correlations of metrics between the same and different aspects cross-metric and

cross-aspect relationsTLCC time lag cross-correlations of metrics between the same and different aspects
MI pointwise mutual information [44] of metrics between the same and different aspects

† Metrics reflecting diverse aspects may tend to behave differently, e.g., the disk usage is steady, while the CPU usage can fluctuate dramatically without
anomalies [11].

Algorithm 1: Incrementally training isolation forest.
Input: Xcat

[1:N ], �,  , Fpre - previously trained forest
Output: A new forest F consisting of � trees and Fpre

1 Initialize F
2 i 1 while i  � do
3 X 0  sample(Xcat

[1:N ], )
4 X 0

iso  Fpre(X
0) // Keep the samples “isolated” by

Fpre

5 F  F [ iT ree(Xiso)
6 end
7 return F

we apply incremental learning to further train the model
with forecasts, whose process is described in algorithm 1.
The forecasted results X̂[1 : N ] = x̂[l + 1 : l + s]n = 1N are
concatenated with the observed data, denoted by Xcat[1 : N ] =
[x[s:l]; x̂[l + 1 : l + s]n = 1N . The concatenated data are then
fed into the established forest. If a concatenation is isolated,
we then remove it from the existing forest and build up a new
isolation tree until the number of trees reaches the pre-defined
threshold �. Finally, 2� trees are created in the isolation forest.
In this way, only the extremely abnormal concatenated samples
are isolated. The idea is based on the fact that anomalies are
rare and most of the concatenated samples should be normal,
even though there are slight differences between concatenated
ones and the original observations X[1:N ].

V. EVALUATION

We evaluate Maat by answering three research questions:
• RQ1: How effective is Maat in anomaly anticipation?
• RQ2: How effective is the forcaster of Maat?

• RQ3: How much time can Maat advance anomaly alarm?

A. Experiment Settings

1) Comparative Approaches: As Maat is the first work
to address anomaly anticipation, we have to compare it
with real-time anomaly detectors. Following the most re-
cent anomaly detection papers [11], [10], we choose eight
state-of-the-art baselines: Dount [24], SR-CNN [45], Ads-
ketch [10], Telemanom [46], LSTM-VAE [47], MTAD-
GAT [23], DAGMM [48], and OmniAnomaly [9]. Note that
Maat anticipates anomalies in advance, whereas the com-
petitors issue alerts after their occurrences. We also evaluate
Maat’s detector individually by removing the forecaster and
only retaining the detector before incremental training to
derive its real-time version, Maat-rt, trained and tested on
observations as baselines do.

As far as we know, no existing studies directly target per-
formance metric forecasting. Thus, we compare Maat’s fore-
caster with general-purpose deterministic baselines (GRU [13],
TCN [12], and Transformer [15]) and advanced probabilistic
generation-based methods for multivariate time series (Deep-
VAR [14], GRU-MAF, and Transformer-MAF [49]). The latter
category regards the mean of output as the final forecast.

2) Datasets: We use three wildly used datasets containing
complex anomaly patterns. Table II summarizes the statistics
of these datasets, where #MetricNum denotes the number
of metrics in the dataset, and #MetricLen Avg. denotes the
average number of sampled points of each metric. All of them
are publicly available with brief introductions as follows.
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RQ1: Effectiveness in Anomaly Anticipation

Maat, as a faster-than-real-time anomaly anticipator relying on forecasts, 
performs as well as or better than SOTA real-time detectors based on real observations.
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RQ2: Effectiveness in Foresting under Anomalies

Maat’s forecaster performs effectively in anomalous metric forecasting, 
reducing MSE by 44.73%~89.81% and sMAPE by 30.76%~65.87% on average.

TABLE I
COMPARISON FOR PERFORMANCE METRIC FORECASTING.

Methods AIOps18 Hades Yahoo!S5

MSE sMAPE MSE sMAPE MSE sMAPE

GRU 6.170 1.256 3.368 1.957 1.422 1.448
Transformer 5.627 1.400 5.628 1.492 1.717 1.443
TCN 4.610 1.230 3.622 0.835 1.111 1.498
DeepVAR 0.428 0.677 1.250 0.692 0.714 1.022
GRU-MAF 2.607 1.451 6.739 1.959 1.180 1.439
Transformer-MAF 3.235 1.470 2.091 1.677 1.226 1.505

Maat-F 0.298 0.566 0.597 0.487 0.426 0.602

Fig. 1. Example of a figure caption.

Figure Labels: Use 8 point Times New Roman for Figure
labels. Use words rather than symbols or abbreviations when
writing Figure axis labels to avoid confusing the reader. As an
example, write the quantity “Magnetization”, or “Magnetiza-
tion, M”, not just “M”. If including units in the label, present
them within parentheses. Do not label axes only with units. In
the example, write “Magnetization (A/m)” or “Magnetization
{A[m(1)]}”, not just “A/m”. Do not label axes with a ratio of
quantities and units. For example, write “Temperature (K)”,
not “Temperature/K”.
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RQ3: Advanced Time of Maat

Maat can anticipate anomalies minutes or hours in advance, 
whereas imposing only a few seconds’ computation overhead.

A2: Maat’s forecaster performs effectively in metric forecast-
ing, especially in anomalous contexts. Such accuracy enables
Maat to attain effective anomaly anticipation results.

D. RQ3: Time Advancing of Maat
Table V presents the overhead of each phase in Maat’s

inference, including forecasting (#ForeT), feature extraction
(#FeatT), and detection (#DeteT), where #ForeL denote the
observation length and the forecast length, respectively. #ALen
indicates how far in advance can Maat alarm an upcoming
anomaly, and the advanced time equals the production of
#ALen and the metric sampling interval. For example, Ya-
hoo!S5 is sampled every hour, and Maat can report anomalies
3 hours faster than real-time under our setting, though the
potential has not been fully exploited.

TABLE V
TIME CONSUMPTION OF MAAT (UNIT: SECOND).

Dataset #ALen #PredT #FeatT #DeteT Total

AIOps18 5 3.031 1.320 0.035 4.386
Hades 3 1.922 0.976 0.036 2.934

Yahoo!S5 3 1.915 0.238 0.036 2.189

The experimental results show that Maat can effectively
anticipate upcoming anomalies 3⇠5 time points in advance,
saving significant time for downstream analysis. This is be-
cause the interval of metric sampling is usually on the order
of minutes or hours in practice, while the anticipation time is
just seconds, almost negligible in contrast. In addition, the
anticipation paradigm of Maat has the potential to prevent
anomalies and even serious failures before their occurrence
by providing forecasts for downstream automated analysis.

A3: Maat can anticipate anomalies several minutes or hours
in advance, with only a few seconds needed for inference,
thus imposing negligible overhead on the system. This means
that Maat saves a lot of time for downstream analysis and has
the potential to prevent anomalies and more serious failures.

E. Successful metric forecasts and feature extraction
We present cases highlighting Maat’s success in forecasting

abnormal metrics and utilizing anomaly-indicating features.
Specifically, Figure 4 displays that Maat can accurately fore-
cast performance metrics, even in abnormal contexts. Though
Maat may not be able to forecast the exact same values, and
it is almost impossible to do so, it successfully forecasts the
trend of suspicious plunges or drops, which implies its ability
to issue effective warnings ahead of anomalies’ occurrence.

Moreover, we find that using the defined anomaly-indicating
features enables the effective isolation of anomalies from
normal samples. To illustrate this, Figure 5 showcases the
feature distributions of four metrics (named by Real-*) from
Yahoo!S5. The figure is constructed by t-SNE [56] with
principal component analysis as the inner dimension reduction
technique to project the features into a 2D space. Notably, the
extracted anomaly-indicating features directly facilitate easy
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(a) AIOps18: Metric “8723f0fb-eaef-32e6-b372-6034c9c04b80”
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(b) Hades: Metric “CPU iowait”
Fig. 4. Successful cases of Maat in forecasting metrics with anomalous
segments on AIOps18 and Hades.

discrimination between anomalies and normal samples. Thus,
we posit that properly designed features contribute to the
success of Maat in anomaly detection.

(a) Real-17 (b) Real-19

(c) Real-22 (d) Real-42
Fig. 5. Distributions of the anomaly-indicating features of four metrics in
Yahoo!S5, wherein the bisque points represent normal samples and the red
points represent abnormal samples.

VI. DISCUSSION

A. Limitations

Limited generalizability beyond cloud service performance.
Maat’s anomaly anticipation is tailored to cloud-service per-
formance metrics with predictable anomalies due to their
well-explored temporal relations and similar underlying in-
frastructures. Its effectiveness for other types of time series
or external anomalies is uncertain as other anomalies beyond
cloud-service performance may be unpredictable.

The number of advanced 
sampling intervals

The total overhead / sec
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Successful Cases

A2: Maat’s forecaster performs effectively in metric forecast-
ing, especially in anomalous contexts. Such accuracy enables
Maat to attain effective anomaly anticipation results.

D. RQ3: Time Advancing of Maat
Table V presents the overhead of each phase in Maat’s

inference, including forecasting (#ForeT), feature extraction
(#FeatT), and detection (#DeteT), where #ForeL denote the
observation length and the forecast length, respectively. #ALen
indicates how far in advance can Maat alarm an upcoming
anomaly, and the advanced time equals the production of
#ALen and the metric sampling interval. For example, Ya-
hoo!S5 is sampled every hour, and Maat can report anomalies
3 hours faster than real-time under our setting, though the
potential has not been fully exploited.

TABLE V
TIME CONSUMPTION OF MAAT (UNIT: SECOND).

Dataset #ALen #PredT #FeatT #DeteT Total

AIOps18 5 3.031 1.320 0.035 4.386
Hades 3 1.922 0.976 0.036 2.934

Yahoo!S5 3 1.915 0.238 0.036 2.189

The experimental results show that Maat can effectively
anticipate upcoming anomalies 3⇠5 time points in advance,
saving significant time for downstream analysis. This is be-
cause the interval of metric sampling is usually on the order
of minutes or hours in practice, while the anticipation time is
just seconds, almost negligible in contrast. In addition, the
anticipation paradigm of Maat has the potential to prevent
anomalies and even serious failures before their occurrence
by providing forecasts for downstream automated analysis.

A3: Maat can anticipate anomalies several minutes or hours
in advance, with only a few seconds needed for inference,
thus imposing negligible overhead on the system. This means
that Maat saves a lot of time for downstream analysis and has
the potential to prevent anomalies and more serious failures.

E. Successful metric forecasts and feature extraction
We present cases highlighting Maat’s success in forecasting

abnormal metrics and utilizing anomaly-indicating features.
Specifically, Figure 4 displays that Maat can accurately fore-
cast performance metrics, even in abnormal contexts. Though
Maat may not be able to forecast the exact same values, and
it is almost impossible to do so, it successfully forecasts the
trend of suspicious plunges or drops, which implies its ability
to issue effective warnings ahead of anomalies’ occurrence.

Moreover, we find that using the defined anomaly-indicating
features enables the effective isolation of anomalies from
normal samples. To illustrate this, Figure 5 showcases the
feature distributions of four metrics (named by Real-*) from
Yahoo!S5. The figure is constructed by t-SNE [56] with
principal component analysis as the inner dimension reduction
technique to project the features into a 2D space. Notably, the
extracted anomaly-indicating features directly facilitate easy
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discrimination between anomalies and normal samples. Thus,
we posit that properly designed features contribute to the
success of Maat in anomaly detection.
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(c) Real-22 (d) Real-42
Fig. 5. Distributions of the anomaly-indicating features of four metrics in
Yahoo!S5, wherein the bisque points represent normal samples and the red
points represent abnormal samples.

VI. DISCUSSION

A. Limitations

Limited generalizability beyond cloud service performance.
Maat’s anomaly anticipation is tailored to cloud-service per-
formance metrics with predictable anomalies due to their
well-explored temporal relations and similar underlying in-
frastructures. Its effectiveness for other types of time series
or external anomalies is uncertain as other anomalies beyond
cloud-service performance may be unpredictable.

A2: Maat’s forecaster performs effectively in metric forecast-
ing, especially in anomalous contexts. Such accuracy enables
Maat to attain effective anomaly anticipation results.

D. RQ3: Time Advancing of Maat
Table V presents the overhead of each phase in Maat’s

inference, including forecasting (#ForeT), feature extraction
(#FeatT), and detection (#DeteT), where #ForeL denote the
observation length and the forecast length, respectively. #ALen
indicates how far in advance can Maat alarm an upcoming
anomaly, and the advanced time equals the production of
#ALen and the metric sampling interval. For example, Ya-
hoo!S5 is sampled every hour, and Maat can report anomalies
3 hours faster than real-time under our setting, though the
potential has not been fully exploited.

TABLE V
TIME CONSUMPTION OF MAAT (UNIT: SECOND).

Dataset #ALen #PredT #FeatT #DeteT Total

AIOps18 5 3.031 1.320 0.035 4.386
Hades 3 1.922 0.976 0.036 2.934

Yahoo!S5 3 1.915 0.238 0.036 2.189

The experimental results show that Maat can effectively
anticipate upcoming anomalies 3⇠5 time points in advance,
saving significant time for downstream analysis. This is be-
cause the interval of metric sampling is usually on the order
of minutes or hours in practice, while the anticipation time is
just seconds, almost negligible in contrast. In addition, the
anticipation paradigm of Maat has the potential to prevent
anomalies and even serious failures before their occurrence
by providing forecasts for downstream automated analysis.

A3: Maat can anticipate anomalies several minutes or hours
in advance, with only a few seconds needed for inference,
thus imposing negligible overhead on the system. This means
that Maat saves a lot of time for downstream analysis and has
the potential to prevent anomalies and more serious failures.

E. Successful metric forecasts and feature extraction
We present cases highlighting Maat’s success in forecasting

abnormal metrics and utilizing anomaly-indicating features.
Specifically, Figure 4 displays that Maat can accurately fore-
cast performance metrics, even in abnormal contexts. Though
Maat may not be able to forecast the exact same values, and
it is almost impossible to do so, it successfully forecasts the
trend of suspicious plunges or drops, which implies its ability
to issue effective warnings ahead of anomalies’ occurrence.

Moreover, we find that using the defined anomaly-indicating
features enables the effective isolation of anomalies from
normal samples. To illustrate this, Figure 5 showcases the
feature distributions of four metrics (named by Real-*) from
Yahoo!S5. The figure is constructed by t-SNE [56] with
principal component analysis as the inner dimension reduction
technique to project the features into a 2D space. Notably, the
extracted anomaly-indicating features directly facilitate easy
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discrimination between anomalies and normal samples. Thus,
we posit that properly designed features contribute to the
success of Maat in anomaly detection.
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Fig. 5. Distributions of the anomaly-indicating features of four metrics in
Yahoo!S5, wherein the bisque points represent normal samples and the red
points represent abnormal samples.

VI. DISCUSSION

A. Limitations

Limited generalizability beyond cloud service performance.
Maat’s anomaly anticipation is tailored to cloud-service per-
formance metrics with predictable anomalies due to their
well-explored temporal relations and similar underlying in-
frastructures. Its effectiveness for other types of time series
or external anomalies is uncertain as other anomalies beyond
cloud-service performance may be unpredictable.
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