

Maat: Performance Metric **Anomaly Anticipation for Cloud Services with Conditional Diffusion**

Cheryl Lee*, Tianyi Yang*, Zhuangbin Chen⁺, Yuxin Su⁺, Michael R. Lyu^{*}

*The Chinese University of Hong Kong +Sun Yat-sen University

Research Track

Sep, 2023

Table of Contents

INTRODUCTION

PARADIGM

METHODOLOGY

EVALUATION

At the same time...

...result in an outage

Observed metrics

At the same time

Small anomalies of a single aspect

Issue analysis

...result in an outage

Currently abnormal or not

Currently abnormal or not

Currently abnormal or not

Abnormal or not in the future

Currently abnormal or not

Lack of highquality labels

Currently abnormal or not

Abnormal or not for the observations & forecasts

Overview

Condition mbeddings $\hbar[\tau] \in \mathbb{R}^h$	
s Model M	
$n_{n=1}^{N}$	

Observations & Forecasts

Feature extraction

• • •

Observations & Forecasts

Feature extraction

Use Xgboost to calculate the importance score of each feature on an annotated validation set.

Detecting

Feature selection

Trained detector

Observations & Forecasts

1

7

Feature extraction

Algorithm 1: Incrementally training isolation forest.

Input: $X_{[1:N]}^{cat}$, γ , ψ , F_{pre} - previously trained forest **Output:** A new forest F consisting of γ trees and F_{pre} **Initialize** F

2
$$i \leftarrow 1$$
 while $i \leq \gamma$ do
3 $| X' \leftarrow sample(X_{[1:N]}^{cat}, \psi)$
4 $| X'_{iso} \leftarrow F_{pre}(X') //$ Keep the samples "isolated" by
 F_{pre}
5 $| F \leftarrow F \cup iTree(X_{iso})$
6 end
7 return F

Feature selection **Trained detector**

Observations & Forecasts

Feature extraction

Algorithm 1: Incrementally training isolation forest.

Input: $X_{[1:N]}^{cat}$, γ , ψ , F_{pre} - previously trained forest Output: A new forest F consisting of γ trees and F_{pre} 1 Initialize F

2
$$i \leftarrow 1$$
 while $i \leq \gamma$ do
3 $| X' \leftarrow sample(X_{[1:N]}^{cat}, \psi)$
4 $| X'_{iso} \leftarrow F_{pre}(X') //$ Keep the samples "isolated" by
 F_{pre}
5 $| F \leftarrow F \cup iTree(X_{iso})$
6 end
7 return F

Isolation trees on observations

Observations & Forecasts

1

7

Feature extraction

Algorithm 1: Incrementally training isolation forest.

Input: $X_{[1:N]}^{cat}$, γ , ψ , F_{pre} - previously trained forest **Output:** A new forest F consisting of γ trees and F_{pre} **Initialize** F

2
$$i \leftarrow 1$$
 while $i \leq \gamma$ do
3 $| X' \leftarrow sample(X_{[1:N]}^{cat}, \psi)$
4 $| X'_{iso} \leftarrow F_{pre}(X') //$ Keep the samples "isolated" by
 F_{pre}
5 $| F \leftarrow F \cup iTree(X_{iso})$
6 end
7 return F

Observations & Forecasts

7

Feature extraction

Algorithm 1: Incrementally training isolation forest.

Input: $X_{[1:N]}^{cat}$, γ , ψ , F_{pre} - previously trained forest **Output:** A new forest F consisting of γ trees and F_{pre} 1 Initialize F

2
$$i \leftarrow 1$$
 while $i \leq \gamma$ do
3 $| X' \leftarrow sample(X_{[1:N]}^{cat}, \psi)$
4 $| X'_{iso} \leftarrow F_{pre}(X') //$ Keep the samples "isolated" by
 F_{pre}
5 $| F \leftarrow F \cup iTree(X_{iso})$
6 end
7 return F

Observations & Forecasts

Feature extraction

Algorithm 1: Incrementally training isolation forest.

Input: $X_{[1:N]}^{cat}$, γ , ψ , F_{pre} - previously trained forest **Output:** A new forest F consisting of γ trees and F_{pre} 1 **Initialize** F

2
$$i \leftarrow 1$$
 while $i \leq \gamma$ do
3 $| X' \leftarrow sample(X_{[1:N]}^{cat}, \psi)$
4 $| X'_{iso} \leftarrow F_{pre}(X') //$ Keep the samples "isolated" by
 F_{pre}
5 $| F \leftarrow F \cup iTree(X_{iso})$
6 end

7 return F

Observations & Forecasts

Feature extraction

Algorithm 1: Incrementally training isolation forest.

Input: $X_{[1:N]}^{cat}$, γ , ψ , F_{pre} - previously trained forest **Output:** A new forest F consisting of γ trees and F_{pre} 1 **Initialize** F

2
$$i \leftarrow 1$$
 while $i \leq \gamma$ do
3 $| X' \leftarrow sample(X_{[1:N]}^{cat}, \psi)$
4 $| X'_{iso} \leftarrow F_{pre}(X') //$ Keep the samples "isolated" by
 F_{pre}
5 $| F \leftarrow F \cup iTree(X_{iso})$
6 end
7 return F

30

)

Observations & Forecasts

Feature extraction

Algorithm 1: Incrementally training isolation forest.

Input: $X_{[1:N]}^{cat}$, γ , ψ , F_{pre} - previously trained forest Output: A new forest F consisting of γ trees and F_{pre} 1 Initialize F

2
$$i \leftarrow 1$$
 while $i \leq \gamma$ do
3 $| X' \leftarrow sample(X_{[1:N]}^{cat}, \psi)$
4 $| X'_{iso} \leftarrow F_{pre}(X') //$ Keep the samples "isolated" by
 F_{pre}
5 $| F \leftarrow F \cup iTree(X_{iso})$
6 end
7 return F

RQ1: How effective is Maat in anomaly anticipation?

RQ2: How effective is the forecaster of Maat?

RQ3: How much time can Maat advance anomaly alarm?

RQ1: Effectiveness in Anomaly Anticipation

Maat, as a faster-than-real-time anomaly anticipator relying on forecasts, performs as well as or better than SOTA real-time detectors based on real observations.

OVERALL PERFORMANCE COMPARISON $(\%)^*$.

Mode	Methods	AIOps18 [†]			Hades			Yahoo! S5			Average		
		<i>F1</i>	Rec	Pre	<i>F1</i>	Rec	Pre	<i>F1</i>	Rec	Pre	<i>F1</i>	Rec	P
Real- time	Dount	36.60	43.06	31.82	49.17	47.49	50.97	58.30	65.77	52.36	48.02	52.11	45.
	SR-CNN	44.81	71.91	32.54	34.25	61.43	23.74	41.06	61.81	30.74	40.04	65.05	29.
	Adsketch	64.82	64.28	65.37	65.35	57.47	75.73	58.08	67.28	51.09	62.75	63.01	64.
	Telemanom	49.49	60.10	42.06	46.75	66.29	36.10	54.10	77.43	41.57	50.11	67.94	39.
	LSTM-VAE	46.35	54.57	40.29	36.89	69.07	25.16	62.77	63.35	62.20	48.67	62.33	42.
	MTAD-GAT	37.85	46.24	32.04	56.90	55.40	58.48	35.62	31.86	40.38	43.46	44.50	43.
	DAGMM	53.52	58.08	49.63	62.10	55.62	70.29	57.33	51.70	64.33	57.65	55.13	61.
	OmniAnomaly	57.40	66.82	50.31	68.17	78.81	60.06	53.13	76.75	40.63	59.57	74.13	50.
	Maat-rt	66.75	64.12	69.60	85.30	84.35	86.28	72.28	74.65	70.06	74.78	74.37	75.
FTRT	Maat	63.78	58.94	69.48	82.07	88.77	76.31	70.31	69.15	71.51	72.05	72.29	72.

re

RQ2: Effectiveness in Foresting under Anomalies

Methods	AIC	Dps18	H	ades	Yahoo!S5		
	MSE	MSE sMAPE		<i>sMAPE</i>	MSE	<i>sMAPE</i>	
GRU	6.170	1.256	3.368	1.957	1.422	1.448	
Transformer	5.627	1.400	5.628	1.492	1.717	1.443	
TCN	4.610	1.230	3.622	0.835	1.111	1.498	
DeepVAR	0.428	0.677	1.250	0.692	0.714	1.022	
GRU-MAF	2.607	1.451	6.739	1.959	1.180	1.439	
Transformer-MAF	3.235	1.470	2.091	1.677	1.226	1.505	
Maat- <i>F</i>	0.298	0.566	0.597	0.487	0.426	0.602	

Maat's forecaster performs effectively in anomalous metric forecasting, reducing MSE by 44.73%~89.81% and sMAPE by 30.76%~65.87% on average.

COMPARISON FOR PERFORMANCE METRIC FORECASTING.

RQ3: Advanced Time of Maat

Maat can anticipate anomalies minutes or hours in advance, whereas imposing only a few seconds' computation overhead.

Successful Cases

Cases of forecasting metrics with anomalies Cases of distinguishing anomalies on features

(a) AIOps18: Metric "8723f0fb-eaef-32e6-b372-6034c9c04b80"

(b) Hades: Metric "CPU iowait"

(b) Real-19

(c) Real-22

(d) Real-42

Presenter: Cheryl LEE

Arise Lab

Full Paper

My Homepage

