

Eadro: An End-to-End **Troubleshooting Framework for Microservices on Multi-Source Data**

Cheryl Lee^{*}, Tianyi Yang^{*}, Zhuangbin Chen^{*}, Yuxin Su[†], and Michael R. Lyu*

> *The Chinese University of Hong Kong +Sun Yat-sen University

Technical Track

Table of Contents

INTRODUCTION

MOTIVATION

METHODOLOGY

EVALUATION

Microservice

Anomaly detection (AD) identifies the existence of an anomaly.

But we need finergrained information...

Anomaly detection (AD) identifies the existence of an anomaly.

But we need finergrained information...

Root cause localization (RCL) answers the probability of each microservice being the culprit.

Inaccurate AD Results Limits RCL's Accuracy

Inaccurate AD Results Limits RCL's Accuracy

Inaccurate AD Results Limits RCL's Accuracy

Three main kinds of **RCL-oriented** anomaly detectors:

- Statistical tools (e.g., N-sigma)
- Feature engineering + Machine Learning (e.g., OC-SVM)
- SPOT (based on Extreme Value Theory)

Current detectors attached with localizers cannot deliver satisfying accuracy.

COMPARISON OF COMMON ANOMALY DETECTORS

	N-sigma	FE+ML	SPOT
FOR	0.632	0.830	0.638
FDR	0.418	0.095	0
#Infer/ms	0.207	1.361	549.169

$$FOR = \frac{FN}{FN+TN'}, FDR = \frac{FP}{FP+TN}$$

Disconnection in two closely related tasks

Consider data besides traces

Traces are insufficient to reveal all potential faults despite their wide usage.

For example, network-related faults incur obvious anomalies in latency of "travel", but the CPU exhaustion fault does not.

Overview

1 Modal-wise Learning

2 Dependency-aware Status Learning

3 Detection & Localization

1 Modal-wise Learning

1 Modal-wise Learning

1 Modal-wise Learning

2 Dependency-aware Status Learning

3 Detection & Localization

Root Cause List

Probability				
0.972				
0.087				
0.011				
0.010				

RQ1: How effective is Eadro in anomaly detection?

RQ2: How effective is Eadro in root cause localization?

RQ3: How much does each data source contribute?

RQ1: Effectiveness in AD

PERFORMANCE COMPARISON FOR ANOMALY DETECTION

Approaches	$\mathcal{T}\mathcal{T}$			\mathcal{SN}			
	<i>F1</i>	Rec	Pre	<i>F1</i>	Rec	Pre	
TraceAnomaly	0.486	0.414	0.589	0.539	0.468	0.636	
MultimodalTrace	0.608	0.576	0.644	0.676	0.632	0.726	
MS-RF-AD	0.817	0.705	0.971	0.773	0.866	$\bar{0.700}$	
MS-SVM-AD	0.787	0.678	0.938	0.789	0.770	0.808	
MS-LSTM	0.967	0.997	0.940	0.948	0.959	0.937	
MS-DCC	0.965	0.993	0.938	0.948	0.962	0.934	
Eadro	0.989	0.995	0.984	0.986	0.996	0.977	

Eadro improves F1-score by 53.82%~92.68% compared to baselines and 3.13%~25.32% compared to derived methods.

RQ2: Effectiveness in RCL

PERFORMANCE COMPARISON FOR ROOT CAUSE LOCALIZATION

Approaches	$\mathcal{T}\mathcal{T}$				\mathcal{SN}					
	HR@1	HR@3	HR@5	NDCG@3	NDCG@5	HR@1	HR@3	HR@5	NDCG@3	NDC
TBAC	0.037	0.111	0.185	0.079	0.109	0.001	0.085	0.181	0.048	0.0
NetMedic	0.094	0.257	0.425	0.195	0.209	0.069	0.187	0.373	0.146	0.2
MonitorRank	0.086	0.199	0.331	0.142	0.196	0.068	0.118	0.221	0.095	0.1
CloudRanger	0.101	0.306	0.509	0.218	0.301	0.122	0.382	0.629	0.269	0.3
DyCause	0.231	0.615	0.808	0.448	0.607	0.273	0.636	0.727	0.301	0.3
MS-RF-RCL	0.637	0.922	0.970	0.807	0.827	0.704	0.908	0.970	0.825	0.8
MS-SVM-RCL	0.541	0.908	0.944	0.814	0.820	0.614	0.838	0.955	0.741	0.7
MS-LSTM	0.756	0.930	0.969	0.859	0.877	0.757	0.884	0.907	0.834	0.8
MS-DCC	0.767	0.938	0.972	0.870	0.882	0.789	0.968	0.985	0.898	0.9
Eadro	0.990	0.992	0.993	0.994	0.994	0.974	0.988	0.991	0.982	0.9

Eadro increases Top-1 Hit Rate by 290%~5068% than baselines and 26.93%~66.16% than the derived methods.

RQ3: Usefulness of Each Data Source

All of the involved data sources can all contribute to Eadro, and traces contribute the most.

EXPERIMENTAL RESULTS OF THE ABLATION STUDY

Variants		$\mathcal{T}\mathcal{T}$		\mathcal{SN}			
	HR@1	HR@5	<i>F1</i>	HR@1	HR@5	<i>F1</i>	
Eadro	0.990	0.993	0.989	0.974	0.991	0.986	
Eadro w/o \mathcal{L} Eadro w/o \mathcal{M} Eadro w/o \mathcal{T}	0.926 0.776 0.785 0.803	0.993 0.962 0.930 0.982	0.964 0.960 0.945 0.970	0.902 0.684 0.627 0.791	0.954 0.947 0.930 0.960	0.972 0.974 0.957 0.946	

Presenter: Cheryl LEE

Arise Lab

Full Paper

My Homepage

