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Inaccurate AD Results Limits RCL’s Accuracy

Current detectors attached with localizers cannot deliver satisfying accuracy.

Three main kinds of RCL-oriented
anomaly detectors:

‣ Statistical tools (e.g., N-sigma)

‣ Feature engineering + Machine 
Learning (e.g., OC-SVM)

‣ SPOT (based on Extreme Value Theory)

𝐹𝑂𝑅 = !"
!"#$"

, 𝐹𝐷𝑅 = !%
!%#$"
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Consider data besides traces

Traces are insufficient to reveal all potential faults despite their wide usage.

For example, network-related faults incur obvious anomalies in latency of 
“travel”, but the CPU exhaustion fault does not.
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RQ1: How effective is Eadro in 
anomaly detection?

RQ2: How effective is Eadro in 
root cause localization?

RQ3: How much does each data 
source contribute?

Evaluation
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RQ1: Effectiveness in AD

Eadro improves F1-score by 53.82%~92.68% compared to 
baselines and 3.13%~25.32% compared to derived methods. 
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RQ2: Effectiveness in RCL

Eadro increases Top-1 Hit Rate by 290%~5068% than 
baselines and 26.93%~66.16% than the derived methods.
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RQ3: Usefulness of Each Data Source

All of the involved data sources can all contribute to Eadro, 
and traces contribute the most.
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