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01 INTRODUCTION

Background, Preliminary…
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Background

Anomaly detection is essential
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Anomaly detection is essential

Single-source data may be insufficient

Combining multi-source data may be effective

Background
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PRELIMINARY

Log Sequence

Log Message

17/06/09 20:10:48 INFO executor.Executor: Finished task 0.0 in stage 0.0 (TID 0). 2703 bytes result sent to driver
17/06/09 20:10:52 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 42
17/06/09 20:10:52 INFO executor.Executor: Running task 0.0 in stage 1.0 (TID 42)
17/06/09 20:10:52 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 56
17/06/09 20:10:52 INFO executor.Executor: Running task 1.0 in stage 1.0 (TID 56)

Parsing

Timestamp Level Component Log Event

17/06/09 20:10:48 INFO executor.Executor Finished task * in stage * (TID *). * 
bytes result sent to driver.

17/06/09 20:10:52 INFO executor.CoarseGrainedExecutorBackend Got assigned task *
17/06/09 20:10:53 INFO executor.Executor Running task * in stage * (TID *)
17/06/09 20:10:54 INFO executor.CoarseGrainedExecutorBackend Got assigned task *
17/06/09 20:10:55 INFO executor.Executor Running task * in stage * (TID *)

Logs



9

PRELIMINARY

Metrics

INFO util.SignalUtils: Registered signal 
WARN netlib.BLAS: Failed to load implementation 
INFO storage.BlockManager: Removing RDD 36 
INFO util.Utils: Successfully started service
INFO storage.BlockManager: Removing RDD 18

Log events
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PRELIMINARY

A chunk

WARN netlib.BLAS: Failed to load implementation 
INFO storage.BlockManager: Removing RDD 36 
INFO util.Utils: Successfully started service
INFO storage.BlockManager: Removing RDD 18
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PRELIMINARY

A chunk

WARN netlib.BLAS: Failed to load implementation 
INFO storage.BlockManager: Removing RDD 36 
INFO util.Utils: Successfully started service
INFO storage.BlockManager: Removing RDD 18 ?

?
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02 MOTIVATION

Anomaly Characteristics, Case Studies
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How do logs manifest system anomalies?

Finding 1

Logs sometimes cannot record fine-grained information and therefore, 
are not susceptible enough to manifest all system anomalies. 

Only 3.62% of positively labeled chunks are 
anomalous from the log's perspective.
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How do metrics manifest system anomalies?

Finding 2

``CPU iowait'' generates a rare heartbeat spike even in the fault-free period.

Metrics are insufficient sometimes. Their over-sensitivity may cause false 
alarms on uncommon yet acceptable fluctuations.
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How do logs & metrics manifest anomalies?

Finding 3

Metrics and logs can both respond to anomalies, but neither is sufficient. They 
have collaborative and complementary relationships in reflecting anomalies. 
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Challenges

Complex intra-modal information:
• Log semantics and sequential dependencies.

• Metrics’ diverse aspects.
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Significant inter-modal gap:
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Our Solution

• Supervised learning is accurate but costly.

• Unsupervised learning ignores human oversight.

Complex intra-modal information:
• Log semantics and sequential dependencies.

• Metrics’ diverse aspects.

• Logs and metrics are in different forms.

• Different degrees of anomaly affectedness.

Significant inter-modal gap:

Trade-off between cost and accuracy:

Properly modeling 
each modality

Cross-modal 
attention

Semi-supervised
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03 METHODOLOGY

Modal-wise Modeling, Cross-modal Attention
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INFO util.SignalUtils: Registered signal 
WARN netlib.BLAS: Failed to load implementation 
INFO storage.BlockManager: Removing RDD 36 
INFO util.Utils: Successfully started service
INFO storage.BlockManager: Removing RDD 18

……
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Log parsing Log vectorization Log representation learning

Log Modeling

INFO util.SignalUtils: Registered signal 
WARN netlib.BLAS: Failed to load implementation 
INFO storage.BlockManager: Removing RDD 36 
INFO util.Utils: Successfully started service
INFO storage.BlockManager: Removing RDD 18

……

Trans Trans Trans

Event Embeddings
Token Embeddings

Avg
Pooling

Parsing
FastText

Sequence Encoder

29
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Pre-processing Intra-Aspect Encoder Inter-Aspect Encoder

Aspect-aware Metric Modeling
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Heterogeneous Representation Fusion
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Detection
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Semi-supervised Learning
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Overview Details

Key Metrics

Aspect Metrics

CPU

tx/b

rx/b

Log File

Settings

Path http://127.0.0.1/ 
root/workspace/…

Workload

ID c0d17d481f47bdd9

Status Running

Start at 22/03/01T07:00:00

Chunk Info

22/03/01T09:28:00～22/03/01T09:38:00Time

Status

Source

Abnormal

Log, Metric Download

Name

%user

I/O

I/O

Log Preview

INFO storage.BlockManager: Found block rdd_2_3 locally
INFO storage.BlockManager: Found block rdd_2_4 locally
INFO util.SignalUtils: Registered signal 
WARN netlib.BLAS: Failed to load implementation 
INFO storage.BlockManager: Removing RDD 36 
INFO util.Utils: Successfully started service
INFO storage.BlockManager: Removing RDD 18
INFO python.PythonRunner: Times: total = 42, boot = -4131, 
init = 4172, finish = 1

10
Auto Freshades

http://127.0.0.1/
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04 Evaluation

Effectiveness Comparison, Ablation Study…
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How effective is Hades in anomaly detection?

The F1-score of Hades is 9.12%~174.41% higher than competitors on average.
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What is the contribution of each design of Hades?
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How sensitive is Hades to the length of a chunk?
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